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Abstract

An accurate solution to the problem of a normal shock moving into still fluid with a density variation is presented.

The solution is obtained using a shock fitted approach and Runge–Kutta time integration. Uniform third order accu-

racy of the scheme is demonstrated. Comparisons with shock captured solutions show that the fitted solution presented

here is more accurate.
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1. Introduction

The problem of a normal shock moving into still air with a density variation has proved to be a nice test

problem for shock-capturing schemes because it has both smooth structure and moving discontinuities.

This problem was first proposed by Shu and Osher [1] in 1989 and has become a standard test case for

shock capturing schemes. In contrast to other test problems, such as the shock tube problems of Sod

and Lax, this problem is a good test of the spatial accuracy of a numerical scheme in smooth regions.

Its one drawback, which we wish to address here, is that there is no exact solution. A linearized solution

of this problem, in terms of plane waves, may be found in [2] but is not of much use in validating numerical
solutions because, for the parameters used, the problem is nonlinear. In current practice, a solution on a

very fine mesh by a shock capturing scheme is used as an exact solution, but, as we show in this paper, even

on very fine grids these schemes display spurious oscillations.
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As the shock propagates into the varying density field, an oscillatory solution develops behind the shock.

At any instant of time, this oscillatory solution is bounded by an expansion fan on the left, a contact dis-

continuity in the middle and the traveling shock on the right (see Fig. 2) . In time, this oscillatory solution

steepens to form a shock train behind the shock, but for earlier times, the solution behind the shock remains

continuous.
Our aim in this paper is to present a highly accurate solution to this problem during this early time per-

iod using a shock fitted approach. In this approach, the shock front is a computational boundary whose

trajectory is generated during the calculation. Since the flow in the computational domain is smooth, there

is good reason to expect a shock fitted solution to be highly accurate. In fact, we modify the problem

slightly so that the early time solution is a bit smoother than the original problem (see below).

Shock fitted solutions have been widely [3–8] used to obtain highly accurate solutions.The main advan-

tage of shock fitting is that simpler, more accurate numerical schemes can be used without incurring spu-

rious O(1) errors at the shock. However, they can be used only in special circumstances where the shock
structure is simple and known in advance. Some previous applications have included the interaction of

sound and vorticity waves with a stationary shock, a blunt body in supersonic flow, shock reflection prob-

lems in two dimensions etc.

We present the shock fitted solution next. Grid refinement studies to estimate the absolute truncation

error and comparisons with shock capturing schemes are presented thereafter, where it is shown that the

shock fitted solution is more accurate.
2. Shock fitted solution

The original problem can be stated on the domain [�1,1] as follows: At t = 0, a normal shock of shock

Mach number M at x = x0, is moving to the right into still air with a density profile. For x 6 x0, we have
q ¼ ððcþ 1ÞM2Þ=ððc� 1ÞM2 þ 2Þ;
u ¼ 2ðcÞ1=2ðM2 � 1Þ=ððcþ 1ÞMÞ;
p ¼ 1:0þ 2cðM2 � 1Þ=ðcþ 1Þ;

ð1Þ
while for x > x0, we have
q ¼ 1:0þ � sin½5px�;
u ¼ 0;

p ¼ 1:

ð2Þ
This problem is usually solved with the following values for the parameters: c = 1.4, M = 3, � = 0.2,

x0 = �0.8 and the final solution is obtained at t = 0.36.
Since the shock fitted solution works best in smooth regions, we modify the problem slightly so that the

solution behind the traveling shock is smoother. Instead of (2) we set (for x > x0)
q ¼ 1:0þ � sin½2:5px�4;
u ¼ 0;

p ¼ 1:

ð3Þ
In the original problem, qx for x > x0 is nonzero while in the modified problem qx, qxx and qxxx are zero.

This modification imposes a gentle start to the interaction and has the effect of smoothing over the expan-

sion fan and the contact discontinuity in the region behind the shock. At the same time, it retains all the

basic features of the solution, namely a highly oscillatory field followed by a traveling shock.
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Fig. 1. Computational grid and update procedure for the shock fitted solution.
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Fig. 2. Solution on a fine grid for t = 0.32; Dt = 6.25E � 6.
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The shock fitted solution is obtained on a nonuniform grid that is traced out by the motion of the shock.

At a time level tn = nDt, the nodes are given by xi, i = 1, n + 1. xn + 1 is the shock location at tn and xi,

1 6 i 6 n are the previous shock locations at time levels, (i � 1)Dt. This grid is shown in Fig. 1.

The key observation to be made in obtaining the shock fitted solution is that conditions behind the shock
remain supersonic throughout the interaction. This permits a solution on the above grid that is updated
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from left to right using a fixed upwind biased stencil. In other words, the interior nodes are updated first,

starting from the left boundary, and the shock position updated last.

Since the grid is not uniform, and the variables are smooth we solve the one dimensional Euler equations

in primitive (nonconservative) form
qt þ uqx þ qux ¼ 0;

ut þ uux þ px=q ¼ 0;

pt þ cpux þ upx ¼ 0;

ð4Þ
where (q,u,p), are the density, velocity and pressure respectively; c = 1.4, is the ratio of specific heats.
As the shock wave propagates one cell every time step, the CFL limit k is necessarily greater than one

since,
k ¼ ðjuj þ aÞDt=Dx ¼ ðjuj þ aÞ=U s > 1; ð5Þ

where Us is the shock speed. Thus we have to choose a scheme that remains stable for CFL numbers greater

than unity [3]. The usual choice is an implicit scheme, but in the interest of simplicity we explore an explicit

scheme with Runge–Kutta time stepping.
Let vn = (qn,un,pn) denote the primitive variables at time level n and f(t,vn) denote the time derivatives at

time level n. We choose the standard four stage Runge–Kutta scheme for this purpose, given by
k1 ¼ Dtf ðtn; vnÞ;
k2 ¼ Dtf ðtn þ Dt=2; vn þ k1=2Þ;
k3 ¼ Dtf ðtn þ Dt=2; vn þ k2=2Þ;
k4 ¼ Dtf ðtn þ Dt; vn þ k3Þ;
vnþ1 ¼ vn þ ðk1 þ 2k2 þ 2k3 þ k4Þ=6:

ð6Þ
Next, we discuss the spatial discretization of Eq. (4). Since the flow conditions remain supersonic, a one

point upwind biased stencil is a natural choice for stability. With the above time discretization, to be stable

at CFL numbers greater than unity, the maximum order possible is three. Thus,we use the one point up-
wind stencil (xi � 2, xi � 1, xi, xi + 1) for the derivative at node xi, 1 6 i 6 n. For i = n + 1, we use the fully

upwind stencil (xi � 3, xi � 2, xi � 1, xi). On a uniform grid, the above scheme with the one point upwind

stencil is stable and uniformly third order accurate for CFL numbers k < 1.753, which is adequate for

our purpose. The left boundary is supersonic during the whole interaction and therefore all variables are

held fixed there. For ease of coding, ghost cells are added at the left boundary so that the boundary cells

can be updated just as interior cells.

To preserve third order accuracy of the whole scheme, the shock trajectory is also integrated

using the same Runge–Kutta scheme. At every stage, the interior nodes are advanced first into the next
stage. Next, the shock node (i.e. xn + 1, at time level n) is advanced into the next stage using the

existing shock velocity at time level n. With the shock location known, the primitive variables at the

new shock location are obtained by extrapolation (third order) from the interior nodes. With conditions

known on both sides of the discontinuity, a Riemann problem [9] is solved to obtain the shock velocity

at that stage. This procedure yields a shock velocity at every stage which is then used to obtain the

shock position at the next time level. At the final stage, the shock node is set to the post-shock

conditions which are available from the Riemann problem solution, which is obtained as described

in [9].
This update procedure can be summarized with respect to Fig. 1, as follows: It is assumed that all vari-

ables, including the shock speed are known at time level tn.
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1. The nodes a to b at time level tn are advanced into the first Runge–Kutta stage as per (6) using the one

point upwind biased stencil.

2. Node c is advanced to the next stage by the fully upwind stencil.

3. The shock location at the next stage (d+) is obtained from the known shock velocity at c. Values of the

primitive variables are extrapolated from the interior values at this stage (a+, b+, c+) to the new shock
location d+. A Riemann problem is solved here with the left state being the extrapolated value and the

right state being the given initial condition. The new shock velocity at d+ is obtained from the Riemann

solution.

4. The same procedure is used to update the solution from stage 1 to stage 2 and stage 2 to stage 3.

5. In the final update, from stage 3 to time level tn + 1, the interior nodes and shock location

are updated as per the Runge–Kutta formula (6). The new shock velocity at the new shock

location (f) is obtained by solving the Riemann problem as before. Finally, the primitive

variables at the new shock location (f) are set to the post-shock variables of the Riemann problem
solution.

This concludes the description of the shock fitted scheme. In the next section we present some grid con-

vergence studies on this scheme as well as comparisons with traditional shock capturing schemes.
3. Numerical results and comparisons

We examine the solution obtained at t = 0.32, when the solution is still continuous behind the shock. A

typical solution on a very fine grid is shown in Fig. 2.
3.1. Grid refinement studies

We first calculate the relative truncation error in these solutions by subtracting a fine grid (Dt/2) solution
from the coarse grid solution (Dt) on the shock trajectory. For example, if we denote the coarse grid solu-

tion at node i as uh(i), the fine grid solution at the same location as uh/2(2i � 1), the difference in the Max
norm is
Table

Grid r

h = Dt

0.32E

0.16E

0.8E �
0.4E �
0.2E �
0.1E �
0.5E �
0.25E

0.125E
eðhÞ ¼ MaxijuhðiÞ � uh=2ð2i� 1Þj: ð7Þ
1

efinement on shock trajectory

L1(uh � uh/2) m1 L1(uh � uh/2) mL1

� 2 0.4614E � 2 0.2025E + 1 0.7157E � 3 0.1816E + 1

� 2 0.1134E � 2 0.2652E + 1 0.2032E � 3 0.2876E + 1

3 0.1805E � 3 0.2966E + 1 0.2768E � 4 0.2995E + 1

3 0.2310E � 4 0.2998E + 1 0.3471E � 5 0.2990E + 1

3 0.2891E � 5 0.3000E + 1 0.4369E � 6 0.2993E + 1

3 0.3614E � 6 0.3000E + 1 0.5487E � 7 0.2996E + 1

4 0.4517E � 7 0.3000E + 1 0.6877E � 8 0.2998E + 1

� 4 0.5646E � 8 0.3002E + 1 0.8609E � 9 0.3001E + 1

� 4 0.7050E � 9 – 0.1075E � 9 –



Table 2

Grid refinement at t = 0.32

h = Dt L1(uh � uh/2) m1 L1(uh � uh/2) mL1

0.32E � 2 0.1387E � 0 0.7832E + 0 0.6424E � 2 0.1409E + 1

0.16E � 2 0.8062E � 1 0.2171E + 1 0.2420E � 2 0.2155E + 1

0.8E � 3 0.1790E � 1 0.2755E + 1 0.5431E � 3 0.2789E + 1

0.4E � 3 0.2652E � 2 0.2938E + 1 0.7857E � 4 0.2946E + 1

0.2E � 3 0.3459E � 3 0.2984E + 1 0.1019E � 4 0.2983E + 1

0.1E � 3 0.4373E � 4 0.2995E + 1 0.1289E � 5 0.2993E + 1

0.5E � 4 0.5485E � 5 0.2998E + 1 0.1619E � 6 0.2997E + 1

0.25E � 4 0.6867E � 6 0.2999E + 1 0.2029E � 7 0.2997E + 1

0.125E � 4 0.8590E � 7 – 0.2541E � 8 –
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This difference is approximately the true truncation error (albeit, multiplied by a factor of 1 � 2(�m), where

m is the order of the scheme). Using two such differences (i.e. three levels of grids) we can also compute the

order of accuracy, m, as
m ¼ ln½eðhÞ=eðh=2Þ�= lnð2Þ: ð8Þ

In Table 1, we present these differences and the order of accuracy in the L1 and Max norms on various

coarse grids. Note that the errors are computed over five fields, namely, the shock position, density, veloc-
ity, pressure and shock velocity. It can be seen that the computed order of accuracy approaches the formal

design accuracy of the scheme in both norms and the relative truncation error estimate falls to within

O(10�9).

In Table 2, we examine the interior solution, i.e. at the final time level in space. Since the spatial grids are

nonuniform, the fine grid solution is interpolated on to the coarse grid node using a centered cubic inter-

polation. The differences between these solutions and order of accuracy are computed as above and shown

in Table 2.

Again, the order of accuracy of the interior solution does approach the formal order of accuracy of the
scheme in both norms showing that the scheme is uniformly third order accurate. The relative errors

obtained here are slightly higher than those obtained on the shock trajectory.

We remark that the order of accuracy obtained for shock fitted solutions using the original initial

condition (i.e. with (2) rather than (3)) is between third. and second order in the L1 norm for the spatial

solution. However, in the Max norm, the order of accuracy degrades to between zeroth. and first order

due to errors at the expansion fan and contact discontinuity. This is to be expected as the solution is

not smooth at these locations.

3.2. Comparison with shock capturing schemes

The interior solution can be compared with results from shock capturing schemes.We have chosen to

compare results with the WENO scheme of Jiang and Shu [10] and the MP5 scheme of Suresh and Huynh

[11]. Both these schemes are formally third order in time and fifth order in space and have been validated on

a number of problems. Since these schemes are well known, we do not describe them here but refer the read-

er to the above references.

Table 3 shows grid refinement studies on the shock captured solution obtained with WENO5 and MP5
schemes. For shock capturing schemes, it does not make sense to compute errors on the Max norm due to

the O(1) errors at the shock. Therefore, only the L1 errors are shown.

The relative truncation errors obtained are several orders of magnitude greater than those obtained with

the shock fit solution. The order of accuracy is a noisy function of grid resolution and nowhere near the



Table 3

MP5 and WENO5 solutions at t = 0.32. CFL = 0.4

Dx MP5 WENO5

L1(uh � uh/2) mL1 L1(uh � uh/2) mL1

0.200E � 1 0.2828E � 1 0.1955E + 1 0.3235E � 1 0.1528E + 1

0.100E � 1 0.7295E � 2 0.7979E + 1 0.1122E � 1 0.9448E + 0

0.500E � 2 0.4196E � 2 0.4642E + 0 0.5829E � 2 0.8222E + 0

0.250E � 2 0.3041E � 3 0.1875E + 0 0.3297E � 2 0.1713E + 1

0.125E � 2 0.8294E � 3 0.8894E + 0 0.1006E � 2 0.9661E + 0

0.625E � 3 0.4477E � 3 0.7882E + 0 0.5147E � 3 0.9016E + 0

0.3125E � 3 0.2593E � 3 0.5333E + 0 0.2755E � 3 0.7413E + 0

0.15625E � 3 0.1791E � 3 – 0.1648E � 3 –
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formal third order accuracy of both schemes. To reduce the possibility of coding error, both these schemes

were tested on smooth initial conditions (i.e. p, u = 1.0 and q = q(x), where q(x) is smooth) and returned

between third and fifth order accuracy as expected.

The actual order of accuracy achieved by a shock capturing scheme in the presence of moving shocks has

been the subject of many studies [12–16]. For example, Casper et al. [15] study a sound shock interaction

problem using a higher order shock capturing scheme and find only first order convergence downstream of

the shock. Higher order convergence is restored if some form of sub-cell resolution is used. In general, the

consensus is that regardless of the formal order of accuracy of the scheme, only first order accuracy is
achieved in regions downstream of the unsteady shock.

In light of these results, the results of Table 3 are not surprising. Here, the lower order convergence is

observed in a region that is again downstream of the traveling shock in the shock fixed frame.

Of some interest is also the maximum value attained in these post shock oscillations. Schemes with lower

accuracy in smooth regions will tend to damp out these oscillations resulting in lower maximum values.

Table 4 shows the maximum values attained on various grids for the shock fitted scheme and the two shock

capturing schemes described above. The maximum value is obtained via a cubic fit of the nodal data.

Finally, we compare these solutions in the vicinity of the contact and expansion fan. Fig. 3 shows fine
grid solutions in the vicinity of the contact discontinuity. The second and higher order shock captured solu-

tions show tiny spurious oscillations on the order of 0.02 here. Although we do not have the exact solution,

it is quite clear that the shock fitted solution is more accurate here.This is also true for Fig. 4 which shows

the solution in the vicinity of the expansion fan.
Table 4

Maximum values of density at t = 0.32

N SFIT MP5 WENO5

100 4.5736731336 4.5006636946 4.3342233874

200 4.6300521471 4.6043947700 4.5319666062

400 4.6844077681 4.6827825688 4.6586656371

800 4.6945802422 4.6957858570 4.6871419691

1600 4.6959239148 4.6999711656 4.6932034039

3200 4.6960953911 4.7020154337 4.6950582082

6400 4.6961170390 4.6990172028 4.6956734114

12,800 4.6961197579 4.6970758461 4.6958732793

25,600 4.6961200986 4.6962524165 4.6959337856

51,200 4.6961201412 – –

For the shock fitted solution (SFIT), Dt = 0.32/N, for all others, Dx = 2/N.
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3.3. Tables of the solution

For comparison purposes, Table 5(a) provides the solution on the shock trajectory (i.e. in time) at a few

discrete points. Similarly, Table 5(b) presents the spatial solution at t = 0.32 at a few points. These points

include all the local extrema in the density solution and the locations of the fan, contact and shock (see Fig.

2).



Table 5

(a) Solution on the shock trajectorya

t xs qs us ps

0.000E + 00 �0.8000000000E + 00 0.3857142857E + 01 0.2629368792E + 01 0.1033333333E + 02

0.320E � 01 �0.6869511634E + 00 0.4180936854E + 01 0.2587267764E + 01 0.1065541386E + 02

0.640E � 01 �0.5780236495E + 00 0.4704043025E + 01 0.2525691427E + 01 0.1114326261E + 02

0.960E � 01 �0.4673536863E + 00 0.3912532449E + 01 0.2618746150E + 01 0.1037369215E + 02

0.128E + 00 �0.3539376770E + 00 0.3868308546E + 01 0.2624136941E + 01 0.1032619633E + 02

0.160E + 00 �0.2423929221E + 00 0.4571701754E + 01 0.2538586295E + 01 0.1101208886E + 02

0.192E + 00 �0.1339597919E + 00 0.4364662937E + 01 0.2562232416E + 01 0.1081713872E + 02

0.224E + 00 �0.2154566429E � 01 0.3855261929E + 01 0.2626175691E + 01 0.1031429159E + 02

0.256E + 00 0.9173603049E � 01 0.4024728380E + 01 0.2605222244E + 01 0.1049221472E + 02

0.288E + 00 0.2014046538E + 00 0.4758217839E + 01 0.2521482952E + 01 0.1120191140E + 02

0.320E + 00 0.3112355137E + 00 0.4009171859E + 01 0.2609686589E + 01 0.1048922702E + 02

(b) Solution at t = 0.32

x q u p

�0.8000000000E + 00 0.3857142857E + 01 0.2629368792E + 01 0.1033333333E + 02

�0.5780447709E + 00 0.3857142857E + 01 0.2629368792E + 01 0.1033333333E + 02

�0.4512996452E + 00 0.4081523815E + 01 0.2519241880E + 01 0.1118458036E + 02

�0.2487365100E + 00 0.3857724205E + 01 0.2629076918E + 01 0.1033551381E + 02

�0.1126873543E + 00 0.4081576804E + 01 0.2519216451E + 01 0.1118478365E + 02

0.3220387877E � 01 0.3861974296E + 01 0.2627200628E + 01 0.1034954005E + 02

0.7909342628E � 01 0.4493197701E + 01 0.2629082704E + 01 0.1033366584E + 02

0.1230115892E + 00 0.3880910514E + 01 0.2618276560E + 01 0.1040211607E + 02

0.1838852235E + 00 0.4696120028E + 01 0.2541721870E + 01 0.1099365631E + 02

0.2401756463E + 00 0.4074588328E + 01 0.2527051395E + 01 0.1113809055E + 02

0.2808749867E + 00 0.4627263910E + 01 0.2572520017E + 01 0.1078050825E + 02

0.3112355137E + 00 0.4009171859E + 01 0.2609686589E + 01 0.1048922702E + 02
a xs is the shock location, while qs, us, ps are the density, velocity, and pressure on the left side of the shock.
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4. Conclusions

A simple and inexpensive scheme to compute the solution of a normal shock interacting with a varying

density field was presented. The shock fitted solution appears to be more accurate than several state of the
art shock capturing solutions. It is hoped that this shock fitted solution can be used in place of an exact

solution on this problem.

Preliminary comparisons between the shock fitted solutions and the shock captured solutions raise several

interesting questions. On this problem, the shock capturing schemes incur small spurious oscillations near

the expansion fan and contact discontinuity, even on very fine grids. In addition, it appears that the shock

capturing schemes achieve lower order accuracy behind the traveling shock, similar to previous studies. It

remains to be seen whether higher order accuracy can be achieved with some form of sub-cell resolution.

In the context of evaluating numerical solutions, the goal is to obtain a highly accurate numerical solu-
tion, where for example, the change in the solution from coarse grid to fine grid is on the order of machine

accuracy (10�12 for double precision). While we are still far from that goal, the shock fitted solutions pre-

sented here are a step toward that goal.
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